






## Analytical Labs - Proficiency, Variance & Standardization Ken Groggel, Director Proficiency Testing



# Why Does the Cannabis Industry Need Testing?

- Safety
- \*Reliability
- \*Fairness
- Transparency
- ❖Improve Performance & Methodology
- \* Regulation



## Why Is It So Important For Cannabis?





## Why Should We Test The Testers?

- ❖Safety Can a Lab Do What They Say?
- ❖Reliability Can Consumer Believe Lab?
- ❖ Fairness Consumer Gets Dose They Pay For?
- ❖Transparency Industry Sees Equipment & Methods That Perform the Best
- ❖Improve Performance & Methodology Objective Feedback For Self Improvement
- ❖Regulation Barometer for How Industry Is Performing



# There Are Several Challenges Particular To This Matrix

- ❖Lack of Federal Oversight 30 Sets of State Regs
- ❖No Standardized Methods At Least 7
- ❖Diverse Equipment Different Per Analyte & Matrix
- ❖ High Diversity/Rapid Evolution in Matrices
- Legal Challenges With Cannabinoids
- Variance



## Variance Deserves More Attention

Variance in commonly expected and accepted (20% - FDA- This is presumed to be under the best of circumstances in industries with standard matrices and standard testing methods)



## Cannabis Has a Greatly Increase Likelihood of Higher Variance

- **❖** Batch Sampling
- Cannabinoid Instability/Degradation
- ❖ Lack of Standard Methods Increases Variance
  - Sample Prep for Gummy vs. Chocolate
  - QPCR vs. RSG/LCM

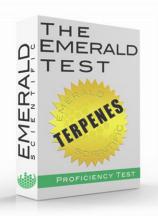


### You Came For The Data

- ❖ Best Barometer By Which To Judge Progress of The Industry Is DATA
- ❖ ILC/PT's Provide LOTS of Data To Learn From
- ❖ I Brought Data From 6 Rounds Over The Last 4 years



#### Evolution of Program Over Time Tells a Story


|                         | 2014   | 2015   | Spring<br>2016 | Fall<br>2016    | Spring<br>2017       | Fall<br>2017              | Spring<br>2018                              |
|-------------------------|--------|--------|----------------|-----------------|----------------------|---------------------------|---------------------------------------------|
| Total # PT's<br>Offered | 1<br>P | 1<br>P | 2<br>P         | 4<br>P,M1,Ps,RS | 5<br>P,M1,Ps,RS<br>H | 7<br>P,M1,M2,Ps<br>RS,H,T | 12<br>P,M1,M2,M<br>3,M4,Ps,RS,<br>H,T(Hemp) |
| Total #<br>Analytes     | 1      | 4      | 16             | 30              | 40                   | 51                        | Ş                                           |
| Total #<br>Participants | 14     | 24     | 36             | 40              | 56                   | 58                        | 77                                          |

P=Potency RS=Residual Solvents M1=Microbial 1 M2=Microbial 2 PS=Pesticides T=Terpenes H=Heavy Metals



## 2014 - Crack & Shoot THC

- **❖** 14 Labs
- ❖ 19 Values Reported
- **♦** All Labs +/- 25%



Breakdown of Instrumentation used to analyze (-)-Delta 9-THC, CAS # 01972-08-3:

| Instrumentation | Number of Laboratories |  |  |
|-----------------|------------------------|--|--|
| GC – FID        | 6                      |  |  |
| GC – MS         | 4                      |  |  |
| LC – UV Vis     | 5                      |  |  |
| TLC             | 1                      |  |  |
| SFC – PDA       | 1                      |  |  |
| LC – PDA        | 2                      |  |  |



#### Progress Demonstrated

#### 50 Emerald Potency Test Fall 2017

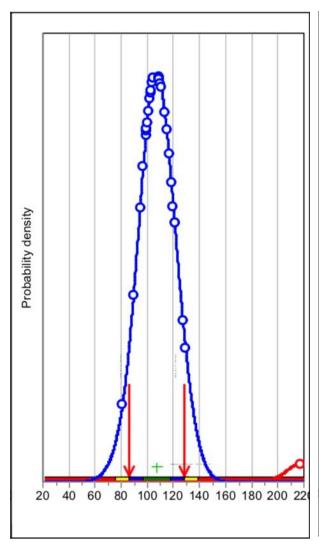
| Analyst            | Tetrahydroc<br>µg/mL | Tetrahydroc<br>Acid A | Total THC μg/mL |
|--------------------|----------------------|-----------------------|-----------------|
| 8118               | 0.802                | 0.872                 | 0.848           |
| 9032               | 0.389                | 0.348                 | 0.418           |
| 9057               | 0.856                | -1.025                | 0.128           |
| 9219               | 0.856                | -0.349                | 0.408           |
| 9541               | -0.348               | -1.331                | -0.703          |
| 9542               | -2.432               | -1.898                | -2.053          |
| 9548               | 0.497                | 0.675                 | 0.608           |
| 9815               | 0.694                | -0.437                | 1.258           |
| 9845               | 0.658                | 0.130                 | 0.478           |
| =                  | -                    | _                     | _               |
| Statistical method | ISO 5725-2           | ISO 5725-2            | ISO 5725-2      |
| Assessment         | Z <=2.000            | Z <=2.000             | Z <=2.000       |
| Consensus Mean     | 64.3                 | 82.4                  | 136.0           |
| Target s.d.        | 5.6                  | 4.6                   | 10.0            |
| Rel. target s.d.   | 8.65 %               | 5.57 %                | 7.35 %          |

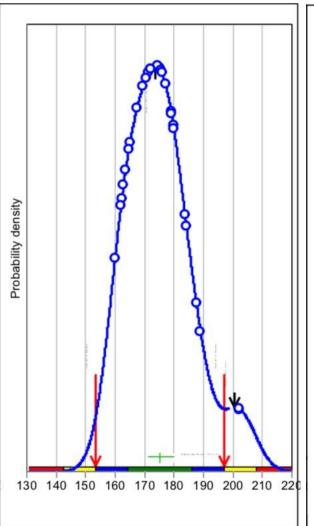
© 2018 Emerald Test

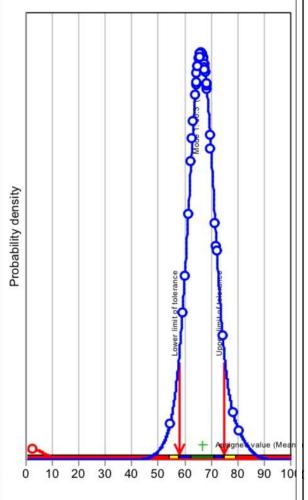
All rights reserved

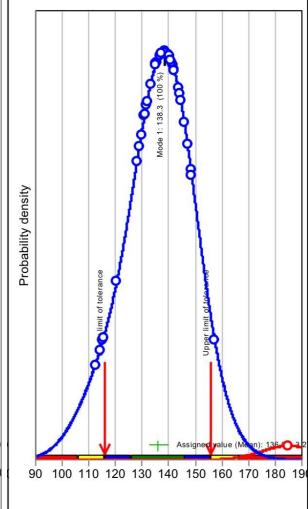
www.emeraldtest.com




# Potency Total THC


Spring 2016


Fall 2016


Spring 2017

Fall 2017











#### Let's Talk Variance Again

#### 2017 Fall ILC/PT Results

- ❖97% of participants were within 20% of consensus mean
- ❖20% Variance is generally considered normal/acceptable
- ❖This Flower testing at 20% THC may be anywhere from 16-24%
- ❖The VALUE of Flower labeled at 16% is significantly different than Flower labeled at 24%

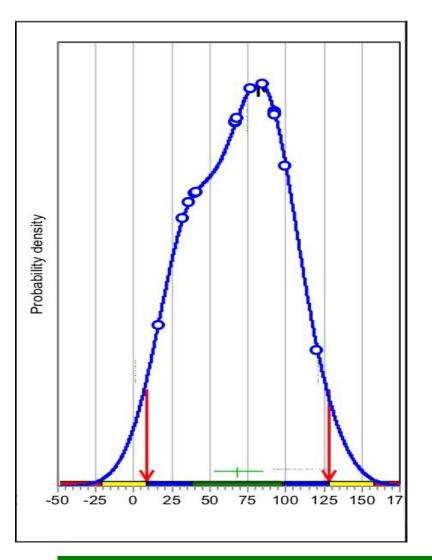


### How Are Labs Performing on Other Key Test?



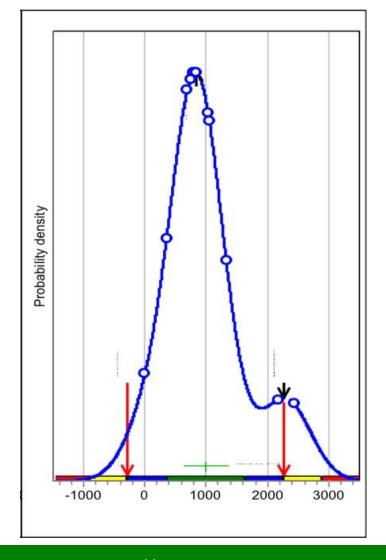
# The Emerald Test Advisory Panel Sets Performance Criteria for Labs to Earn The Emerald Badge (Range of 10%-30% Depending On Analyte of Interest)

- ❖ Quantitative Microbial Panel (+/- 30%) of 34 Participants 28 Received Badges
- ❖ Qualitative Microbial (Salmonella) All 31 Participating Labs Received Badges
- ❖ Pesticide Screening (Qualitative, Identify 21 of 22 Analytes Present) of 25 Participants 22 Received Badges
- \*Terpenes (First Time Offered) 21 Labs Participated With Only 4 outliers (+/-2 σ) Across 8 Analytes



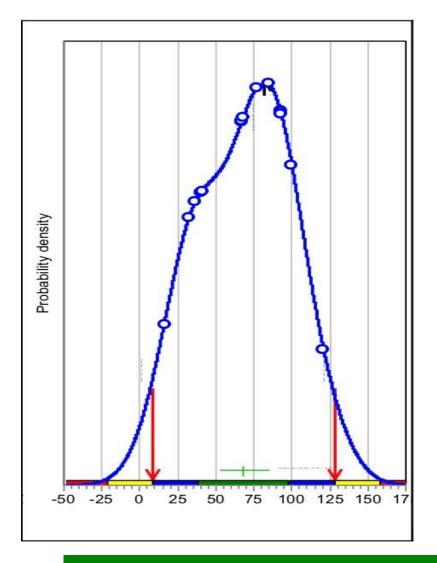

#### It's Not ALL Roses!


- ❖ Heavy Metals Only half of the participating labs earned a badge (+/- 20%)
- ❖Residual Solvents 36 Labs Participated Only 14 Within +/-30% + Large disparity in reported values, Z-Score ranges unreasonable- No Badges Awarded
- Labs generally do a great job identifying every pesticide in our hemp-based PT, but some more work will most likely have to be done to bring quantitative results in line

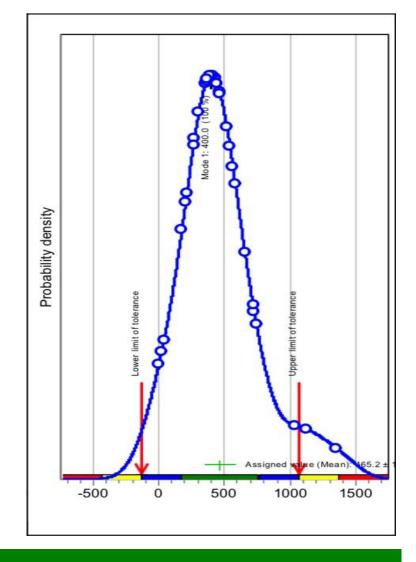



Spring 2016




Residual Solvent
N-Butane
In n, ndimethylacetamid








Spring 2017



Residual Solvent N-Butane Hemp Oil Fall 2017





## 2018 Spring Round


- **❖** 77 Labs
- \* 12 Different Tests Offered
- ❖ 312 Test Registered
- ❖ Watch For The Results
- ❖ Ask Your Lab To Prove They Participate and Pass a PT Program – Emerald Badge in Our Case!



#### What To Look Forward To

- **❖**More Diversity in Matrices
- ❖Adding More Sample Preparation To Tests
- ❖More States Adding PT Requirements
- ❖More Labs Using PT Participation to Gain Accreditation (ISO 17025)



