Listeria monocytogenes transmission at retail

Martin Wiedmann
Department of Food Science
Cornell University
Ithaca, NY
Collaborative effort between Cornell and New York State Department of Agriculture and Markets
(Dan Rice, Joe Corby)

Support for this work was provided by the United States Department of Agriculture, Cooperative State Research, Education and Extension Service, National Integrated Food Safety Initiative Special Emphasis Grant Project Number 2005-51110-03278 and a USDA Special Research Grant
L. monocytogenes strain differentiation (subtyping/fingerprinting)

- Tools which allow sensitive differentiation of bacterial subtypes
 - Detection of contamination sources
- Strain differentiation methods commonly applied to *L. monocytogenes* include serotyping, ribotyping, Pulsed Field Gel Electrophoresis (PFGE), DNA sequencing
 - While serotyping differentiates only 13 subtypes (serotypes), molecular methods generally differentiate more than >100 *L. monocytogenes* subtypes
Ribotyping
Examples of different *L. monocytogenes* ribotypes

Listeria monocytogenes
Pulsed Field Gel Electrophoresis
L. monocytogenes prevalence

- Pristine environments: 1.3% (n=900)
- Urban environments: 7.3% (n=900)
- Ruminant farms
 - Bovine farms with listeriosis cases: 24.35% (n=616)
 - Bovine farms without listeriosis cases: 20.06% (n=643)
 - Small ruminant farms with listeriosis: 32.92% (n=322)
 - Small ruminant farms without listeriosis: 5.89% (n=475)
- Raw foods
- Food processing environments: from <0.1% to 30% or more
- Ready-To-Eat foods: 0.17 – 4.7 % (Gombas et al., 2004)
L. monocytogenes in urban environments

- Albany, NY
 - 214 samples tested
 - 27 positive for LM
 - 10 isolates were ribotype DUP-1038B (over three samplings and >1 year)
The graphs show the percentage of LM (presumably Listeria monocytogenes) positive samples across different sample categories for two groups: bovine and small ruminants.

Bovine
- **Control**
 - Fecal: n=163, Sample Category: 30% LM Positive
 - Soil: n=160, Sample Category: 25% LM Positive
 - Feed: n=158, Sample Category: 20% LM Positive
 - Water: n=162, Sample Category: 15% LM Positive

- **Case**
 - Fecal: n=160, Sample Category: 35% LM Positive
 - Soil: n=160, Sample Category: 20% LM Positive
 - Feed: n=162, Sample Category: 25% LM Positive
 - Water: n=162, Sample Category: 10% LM Positive

Small Ruminants
- **Control**
 - Fecal: n=120, Sample Category: 10% LM Positive
 - Soil: n=85, Sample Category: 40% LM Positive
 - Feed: n=120, Sample Category: 25% LM Positive
 - Water: n=76, Sample Category: 15% LM Positive

- **Case**
 - Fecal: n=86, Sample Category: 15% LM Positive
 - Soil: n=120, Sample Category: 45% LM Positive
 - Feed: n=120, Sample Category: 30% LM Positive
 - Water: n=115, Sample Category: 5% LM Positive

The graphs indicate higher LM positive rates in cases compared to controls, with soil samples showing the highest positive rates across both bovine and small ruminant groups.
<table>
<thead>
<tr>
<th>Raw Product</th>
<th>3/1/01</th>
<th>3/21/01</th>
<th>4/18/01</th>
<th>5/15/01</th>
<th>6/13/01</th>
<th>7/9/01</th>
<th>8/7/01</th>
<th>10/2/01</th>
<th>11/1/01</th>
<th>12/4/01</th>
<th>2/14/02</th>
<th>2/11/02</th>
<th>4/9/02</th>
<th>5/7/02</th>
<th>6/5/02</th>
<th>7/1/02</th>
<th>8/1/02</th>
<th>8/28/02</th>
<th>9/24/02</th>
<th>12/2/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>L spp</td>
<td>L spp</td>
<td>1052A</td>
<td>1042B</td>
<td>1039A</td>
<td>1039C</td>
<td>1039C</td>
<td>-</td>
<td>1038B</td>
<td>L spp</td>
</tr>
<tr>
<td>1 of 6</td>
<td>3 of 6</td>
<td>2 of 6</td>
<td>1 of 6</td>
<td>1 of 6</td>
<td>1 of 6</td>
<td>1 of 6</td>
<td>6 of 6</td>
<td>1 of 6</td>
<td>3 of 6</td>
<td>1 of 6</td>
<td>2 of 6</td>
<td>2 of 6</td>
<td>6 of 6</td>
<td>2 of 6</td>
<td>1 of 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Raw Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3: Apron</td>
</tr>
<tr>
<td>Fillet knife</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finished Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Drain</td>
</tr>
<tr>
<td>E3: Drain</td>
</tr>
<tr>
<td>E4: Cooler Floor</td>
</tr>
<tr>
<td>Floor</td>
</tr>
<tr>
<td>Floor mat</td>
</tr>
<tr>
<td>E6: Cart wheels</td>
</tr>
<tr>
<td>E7: Under Slicer</td>
</tr>
<tr>
<td>E9: Sliding Door</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Food Contact Surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7: Gloves</td>
</tr>
<tr>
<td>E10: Slicer</td>
</tr>
<tr>
<td>E11: Skinner</td>
</tr>
<tr>
<td>E12: DeBoner</td>
</tr>
<tr>
<td>E13: Hot Table</td>
</tr>
<tr>
<td>Tubs-dirty</td>
</tr>
<tr>
<td>Tubs-clean</td>
</tr>
<tr>
<td>New Mixer</td>
</tr>
<tr>
<td>New Table</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finished Product</th>
</tr>
</thead>
</table>
L. monocytogenes in retail environments

- Subtyped 98 food and 40 environmental *L. monocytogenes* isolates collected from retail establishments in New York State between 1997 and 2002
 - Isolates collected from 50 different retail establishments were characterized.
- 16 retail establishments showed evidence for persistence of one or more specific *L. monocytogenes* strains as indicated by isolation of the same EcoRI ribotype from food and/or environmental samples collected in a given establishment on different days
- 17 ribotypes were found among human clinical isolates as well as among food and environmental isolates

Distribution of *Listeria monocytogenes* Molecular Subtypes among Human and Food Isolates from New York State Shows Persistence of Human Disease–Associated *Listeria monocytogenes* Strains in Retail Environments

BRIAN D. SAUDERS,1 **KURT MANGIONE,**2 **CURTIS VINCENT,**2 **JON SCHEMERHORN,**2 **CLAUDETTE M. FARCHIONE,**2 **NELLIE B. DUMAS,**3 **DIANNA BOPP,**3 **LAURA KORNSTEIN,**4 **ESTHER D. FORTES,**1 **KATY WINDHAM,**1 **AND MARTIN WIEDMANN**1*

1Department of Food Science, Cornell University, Ithaca, New York; 2Food Laboratory, New York State Department of Agriculture and Markets, Albany, New York; 3Wadsworth Center, New York State Department of Health, Albany, New York; and 4New York City Department of Health and Mental Hygiene, New York, New York, USA

MS 03-564: Received 5 December 2003/Accepted 21 February 2004

ABSTRACT
L. monocytogenes in retail environments - example

<table>
<thead>
<tr>
<th>Est. Code</th>
<th>Source</th>
<th>Sample Description</th>
<th>Date Collected</th>
<th>Ribotype</th>
<th>Persistent Ribotype (Lineage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Food</td>
<td>Oven roasted turkey</td>
<td>08/17/00</td>
<td>DUP-1062A</td>
<td>DUP-1062A (II)</td>
</tr>
<tr>
<td></td>
<td>Food</td>
<td>Smoked turkey breast</td>
<td>08/25/00</td>
<td>DUP-1062A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>Swab; display cooler</td>
<td>08/29/00</td>
<td>DUP-1062A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>Swab</td>
<td>08/29/00</td>
<td>DUP-1062A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>Swab</td>
<td>08/29/00</td>
<td>DUP-1062A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>Swab; deli case</td>
<td>09/21/00</td>
<td>DUP-1062A</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Environment</td>
<td>Swab</td>
<td>10/27/00</td>
<td>DUP-1053A</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>Swab</td>
<td>10/27/00</td>
<td>DUP-1053A</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Food</td>
<td>Ham</td>
<td>11/07/00</td>
<td>DUP-1042C</td>
<td>DUP-1042C(I)</td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>Swab</td>
<td>11/20/00</td>
<td>DUP-1042C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>Swab</td>
<td>11/20/00</td>
<td>DUP-1042C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>Swab</td>
<td>12/04/00</td>
<td>DUP-1042C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>Swab</td>
<td>12/04/00</td>
<td>DUP-1042C</td>
<td></td>
</tr>
</tbody>
</table>
On-going prospective study on *L. monocytogenes* in retail

- The goal of this project is to collect and test for LM environmental sponge samples from 120 retail establishments over 12 months (10 establishments/month)
 - in each month sponge samples are collected from 5 establishments where NYS Ag & Mkts collected sliced deli meats and from 5 establishments where NYS Ag & Mkts collected store made salads
- Sampling visits are part of NYS Ag & Mkts regular routine surveillance, only change is that environmental sponges will be tested in addition to scheduled food sample
Environmental samples collected

- Slicer or bowl, spoon, cutting boards, tables (e.g., utensils used to prepare salads)
- Sponge from deli case
- Sponge from sink interior in deli/salad area
- Drain in deli area
- Drain in raw meat area
- Drain in raw seafood area
- Floor in a dry isle
- Sponge from dairy case
- One sponge sample from wheels of 4 grocery carts (if no carts are available sponge sample from floor near store entrance will be taken)
- Two optional sponge samples, including, if possible, one sponge sample from a drain in the produce preparation area and one from a drain in a restaurant/café located in the retail operation
Subtyping results (completed for 16 stores with >1 LM positive sample)

- 5 stores: all different subtypes
 - One store with positive RTE salad had different subtypes in product and environment (deli sink)
- One store: drains in produce, seafood, and bakery area all same subtype
- One store: drains in raw meat and produce area, dry isle floor, and sink in deli area all same subtype
- One store: drain in raw meat and produce area same subtype
- One store: drain in raw meat area and sink in deli area same subtype
More subtyping results......

• One store: floor in deli area and dairy case same subtype
• One store: shopping cart wheels and sink in meat area same subtype
• One store: shopping cart wheels and dry isle floor same subtype
• One store: shopping cart wheels produce prep area same subtype
• One store: floor drain in deli area and sink in deli area same subtype
• One store: deli salad utensils and sink in deli area same subtype
• One store: shopping cart wheels and sink in meat area same subtype
• 11 stores with same subtype in multiple sites
Human listeriosis?

- On-going subtyping of human listeriosis cases conducted in collaboration with NYS Department of Health and New York City Department of Health
Geographic Distribution of Human Listeriosis Cases

Number cases (rate/100,000)

Temporal Clusters: A, B, C, D, E, F, G, H, I
Spatial Clusters: B*, D, G*, H, I

*=Epidemiologically-linked cluster (outbreak)
Geographic Distribution of Human Listeriosis Cases

Example: Cluster G

- Single localized geographic cluster

Temporal Clusters: A, B, C, D, E, F, G, H, I

Spatial Clusters: B*, D, G*, H, I

*=Epidemiologically-linked cluster (outbreak)
Summary and conclusions

• *L. monocytogenes*, including subtypes that have been linked to human disease, can persist in natural and urban environments, on farms, in food processing plant and in retail environments
 • Persistence is likely to also occur in other environments (e.g., restaurants, consumer homes)
• More human listeriosis cases than previously assumed may represent small outbreaks
 • Persistence in food chain is likely to be critical for occurrence of listeriosis outbreaks
• Lm contamination in retail operations appears to be dominated by positives in drain samples and multiple sample sites often have appear to have the same subtype
 • Improved sanitation procedures and procedures to reduce cross contamination can likely reduce risk of RTE product contamination
Acknowledgments

- **Collaborators:** K. J. Boor; Y. Grohn, Y. Schukken, J. Scarlett, P. McDonough, M. Smith (CU College of Veterinary Medicine), J. Bruce (Qualicon), W. Johnson, F. Rodgers, and D. Woodward (LCDC, Canada), J. Kiehlbauch, J. Hibbs, and D. Morse (NYSDOH), J. Schermerhorn, J. Corby (NYS Ag & Markets), J. Scott, D. Gumbas (NFPA), P. Mead, B. Swaminathan (CDC), L. Kornstein (NYCDOH), T. Bannerman (Ohio DOH) and the Listeria Working Group

- **Financial support:** New York Sea Grant, USDA-NRI, USDA Special Research Grant, USDA – Food safety Initiative, ILSI N.A., NIH, and Qualicon